Sign Up

1601 Central Campus Mall, Boulder, CO 80309

View map

Indoor Air Quality in Western Canada During Wildfire Episodes
Rebecca Mesburis,
CU ANYL 1st year

The increased frequency, duration, and intensity of wildfires has raised public awareness of the impact of wildfire smoke on air quality and human health. The 2023 wildfire season in Canada broke the record for the most area burned in North America’s history at about 18.5 million hectares. The main threat to public health from wildfire smoke is particulate matter, with particulate matter that have a diameter of 2.5 micrometers or less (PM2.5) contributing to most of the total particulate mass and travelling significant distances from the source of the fire. Recently, low-cost air quality sensors have been used in air quality studies due to their ability to capture high-resolution spatiotemporal data. We used the publicly available low- cost PurpleAir sensor network to gather indoor and outdoor PM2.5 data in Kamloops, Canada from January to December 2021 with the goal to assess the level of exposure to wildfire PM2.5 relative to other sources of PM2.5. Given that we obtain most of our particulate inhalation exposure when indoors, changes to the indoor environment during wildfire episodes were emphasized. On wildfire-influenced days, wildfire PM2.5 dominated the indoor exposure sources and indoor PM2.5 was almost always less than outdoor PM2.5. On non-wildfire- influenced days, no typical relationship was established between indoor and outdoor PM2.5. The analysis was limited by the number of PurpleAir sensors and knowledge of the indoor environments studied. The findings indicate that remaining indoors during wildfire events is currently an effective but finite strategy to limit PM2.5 exposure in Kamloops.

and

Exploring Alcohol Adsorption to Gold Induced by Applied Potential
Drew Blauth,
CU ANYL 1st year

Self-assembled monolayers (SAMs) play vital roles in battery development, biosensor function, and drug delivery. Extensive research has been directed towards adsorbate and substrate pairs that spontaneously form SAMs, such as thiols and gold, leaving pairs that do not spontaneously form SAMs relatively understudied. This project investigated alcohol adsorption to gold, which has been ignored by researchers due to oxygen - gold bond being relatively weak. By applying potential to gold substrates immersed in alcohol solutions and observing alcohol adsorption to gold using Surface Enhanced Raman Spectroscopy (SERS), it was determined that alcohol adsorption to gold could be induced and interrupted repeatedly by cycling between positive and negative applied voltages. While it is unclear exactly how the alcohols interact with the gold, these results suggest that applied potential could be used to create alcohol and gold SAMs, greatly broadening the applications SAMs could be used for.

0 people are interested in this event


anne.handschy@colorado.edu

User Activity

No recent activity